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Abstract—The modeling of logistic system is a major issue
of logistic research. Several researches use data about flow
of goods to extrapolate the evolution of logistic systems, but
these data might be difficult to acquire. We propose a complex
system approach with agents and dynamic graphs to model
logistic systems. It allows us to describe the local properties
and functional rules of these organizations in order to observe
the evolution of such a system in a dynamic context and with
minimal initial data. This paper is the occasion to present the
emergence of the best strategies used by logistics service providers
to restock the warehouses and their customers. It shows how the
mechanisms of our model allow the agents to react to disturbing
events and to update their behaviors in order to stay efficient.

Index Terms—agent-based model, dynamic graph, logistic
system, modeling, complex system

I. INTRODUCTION

In a logistic system, actors interact together in order to
manage coherent flow of goods. They take decisions based on
their available resources (such as infrastructures) but they also
have to deal with the constraints of the system. The efficiency
of a logistic system has an important impact on its economy
or on its environment. The study of such a system is therefore
a major issues of logistics research. Several efforts have been
made in this way, in order to optimize [1] or to understand how
flow of goods are organized [2]. In the literature on logistics,
we can find different models, such as SMILE (Strategic Model
for Integrated Logistic Evaluations) [3] which uses aggregated
data about flow of goods in order to extrapolate the main
roads followed by the goods. We also find some models
like FAME (Freight Activity Microsimulation Estimator) [4],
[5] or TAPAS (Transportation And Production Agent-based
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Simulator) [6], which use disaggregated data. This last model
is designed to simulate three actors around the Baltic sea, and
with a simplified transportation network. But, firstly, Tavasszy
et al. [7] highlight that these models lack of dynamism (they
mostly evolve on a month or even a year basis for each step),
and secondly, the authors of FAME explains that the access to
the needed data might be difficult. Choi et al. [8] describe the
interests to consider logistic system as complex one. We also
shown why logistic systems should be considered as complex
in Demare et al. [9]. The complex system approach allows
to model the behaviors of local entities of such a system in
order to observe the evolution of the whole system thanks
to auto-organization processes and emergence of properties.
We present here a multi-agent model coupled with dynamic
graphs. We describe in the first section which are the agents,
how they interact dynamically, and how they behave thanks to
different strategies. We also present the transportation network
modeled by dynamic graphs. The model is strongly dynamic
and it evolves on an hour basis. In the last section, we present
some results: we show how the best strategies (considering
an efficiency measure) emerge from local and distributed
decisions. These results reveal that our model might be used to
observe how a logistic system evolves according to dynamical
(and possibly disturbing) events.

A. Model

In this section, we first present the actors of the logistics
modeled as agent (see [10] for a full description). Then, we
describe the transportation network modeled by a dynamic
graph.

a) Actors as Agents: The figure 1 represents the actors
modeled by an agent and how they interact together. The final
consignee agents have local stocks. They decrease each day



Final Consignees
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Fig. 1: The different kind of actors modeled by agents.

according to a biased random number (defined thanks to the
Huff’s model [11] !). A logistics service providers (LSP),
chosen by the final consignee, manages the outsourced stocks.
One LSP might have none or several final consignee(s), but
one final consignee has only one LSP (selected randomly,
biased by the distance). The goal of a LSP is to design
and manage a supply network. The topology of this network
is: a foreign goods provider connected to some regional
warehouses, themselves connected to some local warehouses,
connected to the final consignee(s) of the LSP. The topology is
mostly the same from a LSP to another, but the way to select
a warehouse may differ. Indeed, at the initialization of the
simulation, each LSP is associated to one of the four strategies
of selection. The first strategy (the control strategy) simply
selects randomly the warehouses. The second selects the
closest warehouse to the final consignee for a local warehouse,
and the one which offers the largest storage surface for the
regional level. The third selects the warehouses randomly but,
with a bias: according to the distance with the final consignee
for the local level, and according to the storage surface for the
regional level. Finally the fourth strategy makes a first filter
on the warehouses, according to the distance or the surface,
and then select the ones which are the most accessible in
the network (in term of the accessibility index proposed by
Shimbel [12]).

Once the network is designed, the LSP monitors the stocks
levels once a day. The agent browses each warehouse of its
network thanks to a depth-first search algorithm. For each
stock inside the warehouses of his network, the LSP deter-
mines if the current quantity of goods is too low according to
this formula:

q < qmax X S

where ¢ is the current quantity of goods, gmax is the maximal
quantity of goods for this stock, and S is the restock threshold.

U1t considers the population densities and the accessibility to the network
of shops to define their numbers of customers.

This last parameter is a percentage which defines the restock
strategy of a LSP to determine when he orders a restock. The
LSPs do not share the same “restock threshold” value. If the
quantity of product is too low, then the LSP orders the restock
to a node of higher level in the network.

During the simulation, each final consignee regularly takes
measure of the efficiency of their LSP and compares it to
the average efficiency measure of every LSPs. If the LSP is
not efficient enough, then the consignee can decide to choose
another LSP. The figure 2 describes this behavior. There are
two heuristics to make this measure (inspired by the works of
[13], [14]):

« the average number of stock shortages.

« the average time taken to deliver the goods to the final

consignee.

Due to this mechanism, the final consignee will tend to keep
the best LSPs and let the worst ones. We will see in the results
section that the best strategies emerge due to this behavior.

The foreign goods providers represent the access nodes. We
consider that they aggregate every real foreign providers, and
they can satisfy every orders of every kind of product. There
are several provider agents only to model the different access
nodes of the system.

b) Transportation Network as Dynamic Graph: The
transportation network is a dynamic graph. It means that its
topology can be updated in real time (e.g. road works,...)
[16]. Moreover, the traffic on its edges evolve according to
the vehicle traffic.

Vehicle agents carry goods on the network (see figure 3
for activity diagram of this kind of agent). At their creation,
these agents compute a path from their initial location to
their destination. As they move along this path (according to
the speed limits), they leave, on each edge, a trace which is
the amount of goods they carry. At each step, a coefficient
makes decrease the trace on every edges, as the pheromones
in ant colony optimization algorithms [17] which evaporate
progressively. The trace is used to observe the traffic on the
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Fig. 2: Activity diagram of the final consignee agents describing how they manage their collaboration with a LSP.
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Fig. 3: Activity diagram of the vehicle agents carrying goods
on the transportation network

network: if an edge is no more used for some reasons, the
evaporation process will dynamically highlight this change.

II. RESULTS

In this section, we present some results: how the best restock
strategies emerge from local and distributed decisions.

We implemented our model in the GAMA Platform. Our
case study is the Seine axis logistic system. Indeed this partic-
ular system offers several urban areas with a large population
(whose mainly Paris) and the logistic activities are numerous
and various. The geography of this system is also interesting
since the Seine river draws a natural corridor between the
port of Le Havre and the region of Paris. Moreover, the Seine
axis logistic system is related to many research interests due
to the competition with the port of Antwerp which deliver
an important part of the flow of goods to Paris. Therefore,
our simulation might help to understand the strengths and
weaknesses of this system. The data about the actors and the
infrastructures were provided by the Devport project®. There
are around 3000 warehouses agents which provide storage
surfaces of more than 2000m?2. The 7700 final consignees
agents are retailers. There are two foreign goods providers (one
connected to the port of Le Havre and the other one connected
to the port of Antwerp). And there are around 2250 LSP
agents. We notice that the number of simulated agents, and
considering the dynamics of our model, is a main innovation
compared to other researches like TAPAS [6] or FAME [4],
[5].

The figure 4 concerns the choice of a restock strategy. On
each chart, we measure the number of LSPs chosen by the
final consignees. We associate the LSPs to a curve according
to the value of their restock thresholds. For these simulations,

%It is a multidisciplinary research team who works on the study of the
logistic system of the Seine axis
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Fig. 4: Emergence of the best restock strategies

a restock threshold between 5% and 20% is attributed to
each LSP. In order to limit any bias during the adoption of
the strategies, all the LSPs used the same method to select
the warehouses of their supply network. Here, the efficiency
measure used by the final consignee is the number of stock
shortages.

On the figure 4, we can notice the emergence of the same
results whatever the strategy used by the LSPs: agents with
the highest restock threshold are preferred.

A high threshold implies more deliveries, more often. There-
fore the final consignees have less stock shortages with this
strategy. Considering the efficiency measure, it is the best
strategy. Nevertheless, with this strategy the financial costs
should be more important for the final consignees since there
are more goings and comings. In the simulation, the efficiency
measure used by the agents never consider the costs. There-
fore, the implementation of another measure, based on another
criterion, might produce different results on the emergence of
strategies. Moreover, thanks to this mechanism of emergence,
if we disturb the system, the agents are able to react and to
update their behaviors in order to stay efficient.

Thus, we have shown here that the emergence of optimal
behaviors is enforced by our approach.

Of course, the strategies developped here are simple and
they generalyze the main work habits of actors of the logistics.
However, we could implement other strategies more specific
to some particular problems such as the issues related to urban
logistics. For instance, we could use the simulation to observe
the effects of innovative strategies on the congestion of the
urban traffic.

III. CONCLUSION

To put it in a nutshell, we describe in this article an agent
based model coupled with dynamic graphs which represent a
logistic system. We had a complex system approach in order
to model the local behaviors and properties of logistic systems.
It allows us to observe its evolution in a dynamic context and
despite a lack of data about flow of goods. More specifically,
we present the mechanisms behind the emergence of the best
strategies used by logistics service providers to restock the
warehouses and their customers (the final consignees). This
mechanism allows the agents to react to disturbing events as
in the reality. Therefore, with this model, we can observe how
the system evolves according to different scenarios.

As perspective of this work, we would like to implement in
the near future the different modes of transport on the network.



Indeed, the simulation only considers the road to carry goods.
We also want to develop other kind of efficiency measure, for
instance, based on financial costs or on the carbon footprint.
This last measure could be used to study the effects of eco-
taxation.
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